New Markets, New Standards?

Challenges within an OEM-oriented, heterogeneous CAx-Environment

Dr. Klaus Zamazal AVL List GmbH

Johannes Kern CADENAS GmbH

26.02.2009

Company profile

AVL is the world's largest private and independent powertrain engineering company

Development of powertrain systems with internal combustion engines

Software for engine and vehicle simulation

Instrumentation and test systems for engine and vehicle development

Prof. Helmut O. List Owner and CEO

Enterprise Development

Total growth :

1987: 52 Mio € 2007: 620 Mio €

Total increase in employees:

1987:8302007:4100

Average R&D spending: 10 % of turnover Average export quota:

96 % of turnover

The Global Network of AVL Powertrain Engineering

* No Test Facilities

** Analysis only

AVL BASE ENGINE TEAM

More than 600 Engineers globally - near to all customers

Competence in production development projects – 25 Engines in 10 years

Standardized processes, methods and quality management

AVL has been involved in the development of more than 1000 combustion engines

New Markets, New Standards? Challenges ... / CADENAS Industry-Forum Augsburg, 10.02.2009

CONTENT

AVL's Design Challenges – Business Drivers for Modern Solutions

Implemented Solution

Project's Organisation

Next Steps

Summary and Conclusion

CONTENT

AVL's Design Challenges – Business Drivers for Modern Solutions

- Broad Variety
- Following AVL's Engine Development Processes
- Multi Site & Project Orientation
- Global Customers' Focus
- Heterogenous Tool Environment

Implemented Solution

Project's Organisation

Next Steps

Summary and Conclusion

Modern Solutions with Broad Variety

Number of Design Projects (*)

(*) executed in Headquarter Graz

New Markets, New Standards? Challenges ... / CADENAS Industry-Forum Augsburg, 10.02.2009

Modern Solutions with Broad Variety

Mass:

AVL Engine Development Process (standardized and continuously improved since 1998)

AVL Engine Development Process - Detailed view of development tasks

Definition of development tasks

Description of the logical links between the tasks

Optimisation of the technical data flow in an engine development project

AVL Frontloading Process for "First Time Right" product development

New Customers – New Markets

Number of Design Projects (*)

New Markets, New Standards? Challenges ... / CADENAS Industry-Forum Augsburg, 10.02.2009

Multi Site & Global Solutions

Corresponds with ...

Designation of screw thread(d)		M5	M6		M8		M10		M12	ΙΓ		Gewinde (a	1)
Type of hexagon part height Note(5)		-	N	L	N	L	N	L	-		P^2		-
Nominal No. of screw thread		05	06		08		10		12		- /		
Pitch		0.8	1.0		1.25		1.25		1.25				;
В	Basic dimension	8	10 0 -0.2		12 0 -0. 25		14 0 -0.25		17	b	Hilfsmaß		
	Tolerable deviation	0							0			-	
	Torerable deviation	-0.2							-0.25				
C (min.)		8.9	11.1		13.3		15.5		18.90		C	48.47. (NY 1 -	
D	(min.)	11.5	13.5	13.5	16.5	16.5	19	19.2	23			unerer -	
(max.)		12.5	14.5	14.0	17.5	17.0	20	20	24			_	
Н	Basic dimension	4.9	5.7	5.6	7.5	7.0	9.3	8,3	10.8		d_{a}	Form	-
	Tolerable deviation	0	0	0	0	0	0	0	0				
		-0.3	-0.35	-0.35	-0.5	-0.4	-0.5	-0.45	-0.5		d_{c}		4
h (min.)		3.4	3.9	4.0	5.4	5.0	6.8	6.0	7.8	-			
t	Basic dimension	0.7	0.8	0.8	1.0	1.0	1.2	1.2	1.4		d		_
	Tolerable deviation	±0.2	±0.2	± 0.1	±0.2	± 0.1	± 0.25	±0.15	±0.25		. · · · · ·		
r (max.)		0.7	0.8		1.1	-	1.4	-	1.6	-			
g	(min.)	2	2.3	2.8	3.2	3.5	4.1	4.2	4.7		$d_{\mathbf{v}}$		
d1	(min.)	4.36	5.22	5.15	7.04	7.0	9.04	9.0	11.03	-	d		
R (min.)		0.3	0.4		0.6		0.6		0.8	-			
D2 (max.)		5.7	6, 8		9.2		11.2		14.2		е		1
a-b (max.)		0.3	0.3		0.4		0.4		0.5		b	DARK -	
Class1	f (Approx.)	0.8	1	-	1.2	-	1.5	-	2		K		
	D1 (Approx.)	6.5	8.5	-	10.5		12.2	-	15.2		k_{w}		
Class 1 &	rl (Reference)	0.5	0.5		0.65		0.65		0.8		1.	L VALEATT I	
Class 3	D1 (min.)	10.8	12	. 8	8 15.6		18.1	18, 3	21.8		۰۲.		
Class 3	B1 (Approx.)	6.7	8.5	-	10.2	-	12	-	14.8		r_1		
	f1 (Approx.)	0.8	1	-	1.2	-	1.5	-	1.8		r. ⁶)	10.000	
	f2 (max.)	2.3	2.6		3.6	-	4.6	-	5.3		'2 /		

Gewinde (d)			M5	M6	M8	M10	M12
P²)			0,8	1	1,25	1,5	1,75
	Hilfsmaß	3)	16	18	22	26	30
b		4)		—	28	32	36
		⁵)	_	_		_	
с		min.	1	1,1	1,2	1,5	1,8
	Form	F max.	5,7	6,8	9,2	11,2	13,7
d _a		U max.	6,2	7,5	10,0	12,5	15,2
d _c		max.	11,4	13,6	17	20,8	24,7
		max.	5,00	6,00	8,00	10,00	12,00
d_s		min.	4,82	5,82	7,78	9,78	11,73
d _v			5,5	6,6	8,8	10,8	12,8
dw		min.	9,4	11,6	14,9	18,7	22,5
е		min.	7,59	8,71	10,95	14,26	17,62
k		max.	5,6	6,9	8,5	9,7	12,1
$k_{\rm w}$	- 19 L - 19 L	min.	2,3	2,9	3,8	4,3	5,4
l_{f}		max.	1,4	1,6	2,1	2,1	2,1
r_1		min.	0,2	0,25	0,4	0,4	0,6
r_2^{6})		max.	0,3	0,4	0,5	0,6	0,7

SES P 1202d - Hexagon Bolts with Flange

EN 1662 – Sechskantschrauben mit Flansch

Historical Overview of Tools for Product Development - Design

New Markets, New Standards? Challenges ... / CADENAS Industry-Forum Augsburg, 10.02.2009

Multi CAD & Multi TDM & Single PDM

AVL's SOLUTION APPROACH

Standardizing supports Innovation

AVL's Design Challenges – Business Drivers for Modern Solutions

Implemented Solution

- Overview: 4 CAD systems, 4 EDM systems, 2 PDM systems
- Installation type and update strategy

Project's Organisation

Next Steps

Summary and Conclusion

AVL's SOLUTION – Situation in 2006

Major non-IT-targets: AVL Power Train

One solution for standard parts needed

- \rightarrow CAD independent solution needed
- \rightarrow EDM independent solution needed

PDM-Link as master required

Solution has to support PDM-Link as PDM (no new master system) → PDM/ERP independent solution needed

Easy to use

Especially with different OEM environments the solutions should be easy to use. (What is preferred and allowed this time?)

Major IT-targets: AVL Power Train

Manual process was "easiest" solution from IT point of view

In the past: Processes were ignored very often. Everybody did what he wanted \rightarrow lots of duplicates and wasted engineering recources (remember the discussion at kickoff workshop)

Note: The new solution was mostly requested by the Key-Engineers!

06/2008:

PARTsolutions implementation starts Project thread: IT solution will get too complex

AVL's SOLUTION – Situation in 2009

New Markets, New Standards? Challenges ... / CADENAS Industry-Forum Augsburg, 10.02.2009

Basic EDM Workflow

Fig.: Structural overview of CAD - PARTsolutions - PDM - ERP linking.

PARTsolutions installation facts

No Client installation

- To use PARTsolutions ightarrow just use the
- start_CATIA_with_psol.bat, start_WF_with_psol.bat
- Software binaries, configurations and catalogs are on a net-folder: n:\iparts\cadenas
- \rightarrow no new server needed
- → Also an existing server replication is used (n:\ in Graz = \\hpsrv12, n:\ in other locations is a mirrored copy of hpsrv12)

→ One installations for all PowerTrain CAD/PDM systems

Clear update and rollout scenarios

Easy test vs. productive system handling Rollout and update by just copying a file share

CAD / PDM handling

All CAD files are in the coresponding PDM system (no additional replication needed! → standard PDM processes)

none or only very few modifications in EDM and PDM systems done

CONTENT

AVL's Design Challenges – Business Drivers for Modern Solutions

Implemented Solution

Project's Organisation

- Team
- Deliverables
- Internal Effort

Next Steps

Summary and Conclusion

PROJECT ORGANISATION

Team, Deliverables & approx. Effort (Internal)

Initial Phase (11/07 - 02/08)

- 2 Workshops with 12 CAD-Users & 2 Sys.-Admin (250h)
- Scope of Solution
- "4 Step" Approach

Commercial Phase (03/08 – 04/08)

= PM & GF (30h)

Implementation Phase (05/08 – 11/08)

- 3 CAD-Key User & 3 Sys.-Admin & 2 IT & 1 PM-PDM (300h)
 PM (100h)
 - Roll-Out & Training Efforts

(60h + 200 x 0,5h)

CONTENT

AVL's Design Challenges – Business Drivers for Modern Solutions

Implemented Solution

Project's Organisation

Next Steps

- Optimization
- Roll-Out WorldWide
- "Phase 2"

Summary and Conclusion

Optimization

- PARTsolution replaces ...
- SP-Part "Creator" as a Role

Roll-Out WorldWide

- Improve in STY & HTC
- Implement in USA
- Initiate in Asia (STC, ITC, ...)

"Phase 2"

- Supplier Components (SCs)
- Support for "Prüfstands-DMU" incl. Tools

"Prüfstands-DMU" (Virtual Engine Build-Up)

New Markets, New Standards? Challenges ... / CADENAS Industry-Forum Augsburg, 10.02.2009

"Prüfstands-DMU" (Virtual Engine Build-Up)

"Prüfstands-DMU" (Virtual Engine Build-Up)

⇒ Serial Part

⇒ Advanced Prototyp

CONTENT

AVL's Design Challenges – Business Drivers for Modern Solutions

Implemented Solution

Project's Organisation

Next Steps

Summary and Conclusion

SUMMARY & CONCLUSION

Implementation Done for "Phase 1" (cw 49/08)

- (nearly) in Time
- in Budget
- What else ... Do's and Dont's
 - Implementation in steps leading system defined by most experience
 - Testing and Documentation by Key-User
 - "Hang-Over" Phase
 - Holidays
 - Roll-Out with enough licenses
 - Don't focus on future dependencies
 - Support from CAD-System Provider
 - Early Wins and Hungry Designers

AVL'S NEW LOGO IS VISION AND PROGRAM

